Linear impulse:
If \vec{F} be the total external force acting on a system of particles, then the total linear impulse will be \displaystyle{\int_{t_1}^{t_2}}\vec{F}dt . This linear impulse is equal to the change in linear momentum.
If M be the total mass of he system and \vec{V} be the velocity of the centre of mass of the system then we can write,
\displaystyle{\int_{t_1}^{t_2}}\vec{F}dt=\displaystyle{\int_{t_1}^{t_2}}M\frac{d\vec{V}}{dt}dt\\=\displaystyle{\int_{t_1}^{t_2}}M\ d\vec{V}\\=M(\vec{V_2}-\vec{V_1})\\=M\vec{V_2}-M\vec{V_1}\\=\vec{p_2}-\vec{p_1}where, \vec{V_1} and \vec{V_2} are the velocities of he centre of mass at times t_1 and t_2 respectively.
Here, \vec{p_1} and \vec{p_2} are the total linear momentum at times t_1 and t_2 respectively.