Two Particles Having Masses “m1” And “m2” Move So That Their Relative Velocity is “v” And The Velocity Of Their Centre Of Mass Is “V”. Calculate The Total Potential Energy.

Share:

Ans.

Let us consider two particles of masses \( m_1 \) and \( m_2 \) having position vector \( \vec{r_1} \) and \( \vec{r_2} \) with respect to the origin O. Let \( \vec{R} \) be the position vector of centre of mass C with respect to the origin O.

Fig. 1

Therefore, \( \displaystyle{\vec{R}=\frac{m_1\vec{r_1}+m_2\vec{r_2}}{m_1+m_2}} \)

or, \( \displaystyle{\dot{\vec{R}}=\frac{m_1\dot{\vec{r_1}}+m_2\dot{\vec{r_2}}}{m_1+m_2}} \)

or, \( \displaystyle{\dot{\vec{R}}=\frac{m_1\vec{v_1}+m_2\vec{v_2}}{m_1+m_2}} \)

or, \( \displaystyle{\vec{V}=\frac{m_1\vec{v_1}+m_2\vec{v_2}}{m_1+m_2}} \)

or, \( (m_1\vec{v_1}+m_2\vec{v_2})=(m_1+m_2)\vec{V}\tag{1} \)

where, \( \vec{v_1} \) and \( \vec{v_2} \) are the velocities of the masses \( m_1 \) and \( m_2 \) respectively and \( \vec{V} \) is the velocity of the centre of mass.

If \( \vec{v} \) be the velocity of \( m_1 \) relative to \( m_2 \) then

\( \vec{v}=\frac{d}{dt}(\vec{r_1}-\vec{r_2})\\=\dot{\vec{r_1}}-\dot{\vec{r_2}} \)

or, \( \vec{v}=\vec{v_1}-\vec{v_2}\tag{2} \)

Solving equations (1) and (2) we get

\( \displaystyle{\vec{v_1}=\vec{V}+\frac{m_2\vec{v}}{m_1+m_2}} \)

and, \( \displaystyle{\vec{v_2}=\vec{V}-\frac{m_1\vec{v}}{m_1+m_2}} \)

Therefore the total kinetic energy is given by,

\( T=\frac{1}{2}m_1{v_1}^2+\frac{1}{2}m_2{v_2}^2 \)

\( =\frac{1}{2}m_1{\left(\vec{V}+\frac{m_2\vec{v}}{m_1+m_2}\right)}^2+\frac{1}{2}m_2{\left(\vec{V}-\frac{m_1\vec{v}}{m_1+m_2}\right)}^2 \)

\( =\frac{1}{2}(m_1+m_2)V^2+\frac{1}{2}\frac{m_1m_2}{m_1+m_2}v^2 \)

or, \( T=\frac{1}{2}MV^2+\frac{1}{2}{\mu}v^2 \)

where, \( M=(m_1+m_2) \) is the total mass of the system and \( \mu=\frac{m_1m_2}{m_1+m_2} \) is the reduced mass of the system.

Share: