Let us consider \vec{F_i} be the resultant external force acting on the ith particle of a system of n particles and \vec{F_{ij}} be the internal force on the ith particle due to the jth particle.
So the resultant internal force on the ith particle due to all other particle is \displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}} , where i\neq{j} .
If \vec{p_i} be the linear momentum of the ith particle of mass m_i moving with velocity \vec{v_i} and \vec{r_i} be the position vector of ith particle then the total force on the ith particle is given by,
\vec{F_i}+\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\displaystyle{\frac{d}{dt}\vec{p_i}}=\frac{d}{dt}(m_i\vec{v_i})
or, \vec{F_i}+\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\frac{d^2}{dt^2}(m_i\vec{r_i})\tag{1}
Summing over i in equation (1) we get,
\displaystyle{\sum_{i=1}^{n}}\vec{F_i}+\displaystyle{\sum_{i=1}^{n}}\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\frac{d^2}{dt^2}\left[\displaystyle{\sum_{i=1}^{n}}(m_i\vec{r_i})\right]
Now according to Newton’s 3rd law, \vec{F_{ij}}=-\vec{F_{ji}} , so \displaystyle{\sum_{i=1}^{n}}\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=0
Therefore,
\displaystyle{\sum_{i=1}^{n}}\vec{F_i}=\frac{d^2}{dt^2}\left[\displaystyle{\sum_{i=1}^{n}}(m_i\vec{r_i})\right]
or, \vec{F}=\frac{d^2}{dt^2}(M\vec{R})
where, \displaystyle{\vec{R}=\frac{\displaystyle{\sum_{i=1}^{n}}m_i\vec{r_i}}{M}} is the position vector of centre of mass of the system and \displaystyle{(M=\sum_{i=1}^{n}m_i)} is the total mass of the system.
or, \displaystyle{\vec{F}=M\frac{d^2\vec{R}}{dt^2}}
\vec{F} is the total force acting on the system of particles.