Processing math: 5%

Prove That The Centre Of Mass Of A System Of Particles Moves As If The Total Mass And The Resultant External Force Were Applied At This Point.

Share:

Let us consider \vec{F_i} be the resultant external force acting on the ith particle of a system of n particles and \vec{F_{ij}} be the internal force on the ith particle due to the jth particle.

So the resultant internal force on the ith particle due to all other particle is \displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}} , where i\neq{j} .

If \vec{p_i} be the linear momentum of the ith particle of mass m_i moving with velocity \vec{v_i} and \vec{r_i} be the position vector of ith particle then the total force on the ith particle is given by,

\vec{F_i}+\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\displaystyle{\frac{d}{dt}\vec{p_i}}=\frac{d}{dt}(m_i\vec{v_i})

or, \vec{F_i}+\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\frac{d^2}{dt^2}(m_i\vec{r_i})\tag{1}

Summing over i in equation (1) we get,

\displaystyle{\sum_{i=1}^{n}}\vec{F_i}+\displaystyle{\sum_{i=1}^{n}}\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=\frac{d^2}{dt^2}\left[\displaystyle{\sum_{i=1}^{n}}(m_i\vec{r_i})\right]

Now according to Newton’s 3rd law, \vec{F_{ij}}=-\vec{F_{ji}} , so \displaystyle{\sum_{i=1}^{n}}\displaystyle{\sum_{j=1}^{n}\vec{F_{ij}}}=0

Therefore,

\displaystyle{\sum_{i=1}^{n}}\vec{F_i}=\frac{d^2}{dt^2}\left[\displaystyle{\sum_{i=1}^{n}}(m_i\vec{r_i})\right]

or, \vec{F}=\frac{d^2}{dt^2}(M\vec{R})

where, \displaystyle{\vec{R}=\frac{\displaystyle{\sum_{i=1}^{n}}m_i\vec{r_i}}{M}} is the position vector of centre of mass of the system and \displaystyle{(M=\sum_{i=1}^{n}m_i)} is the total mass of the system.

or, \displaystyle{\vec{F}=M\frac{d^2\vec{R}}{dt^2}}

\vec{F} is the total force acting on the system of particles.

Share:


Subscribe to the Physics Notebook Newsletter and get the latest insights and updates delivered straight to your inbox.