Here the position vector of the point is given by,
\vec{r}=(\frac{4}{3}t^3-2t)\hat{i}+t^2\hat{j}
So the velocity is \displaystyle{\vec{v}=\frac{d\vec{r}}{dt}}
or,\ \displaystyle{\vec{v}=\frac{d}{dt}[(\frac{4}{3}t^3-2t)\hat{i}+t^2\hat{j}]}
or,\ \vec{v}=\displaystyle{(\frac{4}{3}\times{3}t^2-2)\hat{i}+2t\hat{j}}
or,\ \vec{v}=(4t^2-2)\hat{i}+2t\hat{j}
Now, at t=3sec.
\vec{v}=(4\times{3}^2-2)\hat{i}+2\times{3}\hat{j}
or,\ \vec{v}=34\hat{i}+6\hat{j}
So the magnitude of the velocity \vec{v} is,
v=|\vec{v}|=\sqrt{34^2+6^2}=34.5\ m/sec
Again we know that acceleration is the time derivative of the velocity vector. So the acceleration is given by,
\displaystyle{\vec{a}=\frac{d\vec{v}}{dt}}
or,\ \vec{a}=\displaystyle{\frac{d}{dt}[(4t^2-2)\hat{i}+2t\hat{j}]}
or,\ \vec{a}=(4\times{2}t-0)\hat{i}+2\hat{j}
or,\ \vec{a}=8t\hat{i}+2\hat{j}
So at t=3 sec. the acceleration is
\vec{a}=8\times{3}\hat{i}+2\hat{j}
or,\ \vec{a}=24\hat{i}+2\hat{j}
So the magnitude of the acceleration is given by,
a=|\vec{a}|=\sqrt{24^2+2^2}=24.1\ m/{sec}^2