Let us consider a sphere of radius R and a ring element PQTS of thickness PQ on the surface of the shere.
OA is normal through the centre of the ring element.
Here \( \angle{QOA}=\theta \) and the angular width of the ring element is \( \angle{POQ}=d\theta \).
Let \( r \) be the radius of the ring QT, so \( r=R\ \sin\theta \).
Now the width of the ring element is \( PQ=R\ d\theta \).
Therefore the area of the surface of the ring element is given by,
\( dA=2\pi{r}\times{PQ}=2\pi{r}\times{R\ d\theta} \)
\( or,\ dA=2\pi{R\ \sin\theta}\times{R\ d\theta} \)
\( or,\ dA=2\pi{R^2}\ \sin\theta\ d\theta \)
Now the solid angle subtended by the ring at the centre O of the sphere is given by,
\( \displaystyle{d\omega=\frac{dA}{R^2}=\frac{2\pi{R^2}\ \sin\theta\ d\theta}{R^2}} \)
\( \displaystyle{or,\ d\omega=2\pi\ \sin\theta\ d\theta} \)
Again, \( \displaystyle{\sin\theta=\sin\ 2\frac{\theta}{2}=2\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}} \)
So the solid angle subtended by the circular ring element can be expressed as,
\( \displaystyle{d\omega=4\pi\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}\ d\theta} \)