Let us consider a sphere of radius R and a ring element PQTS of thickness PQ on the surface of the shere.
OA is normal through the centre of the ring element.
Here \angle{QOA}=\theta and the angular width of the ring element is \angle{POQ}=d\theta .
Let r be the radius of the ring QT, so r=R\ \sin\theta .
Now the width of the ring element is PQ=R\ d\theta .

Therefore the area of the surface of the ring element is given by,
dA=2\pi{r}\times{PQ}=2\pi{r}\times{R\ d\theta}
or,\ dA=2\pi{R\ \sin\theta}\times{R\ d\theta}
or,\ dA=2\pi{R^2}\ \sin\theta\ d\theta
Now the solid angle subtended by the ring at the centre O of the sphere is given by,
\displaystyle{d\omega=\frac{dA}{R^2}=\frac{2\pi{R^2}\ \sin\theta\ d\theta}{R^2}}
\displaystyle{or,\ d\omega=2\pi\ \sin\theta\ d\theta}
Again, \displaystyle{\sin\theta=\sin\ 2\frac{\theta}{2}=2\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}}
So the solid angle subtended by the circular ring element can be expressed as,
\displaystyle{d\omega=4\pi\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}\ d\theta}