Ans.
A particle of mass m_1 moving with velocity u_1 collides head-on collision with the particle of mass m_2 moving with the velocity u_2 .
Let us consider v_1 and v_2 be the velocities of mass m_1 and m_2 respectively.
According to the conservation of linear momentum,
m_1u_1+m_2u_2=m_1v_1+m_2v_2 \tag{1}
If e be the coefficient of restitution, then
\displaystyle{e=\frac{v_2-v_1}{u_1-u_2}}\tag{2}
The loss of kinetic energy due to the impact is
=Kinetic energy before collision – Kinetic energy after collision
= (\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2)-(\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2)
= \frac{1}{2}\left[(m_1u_1^2+m_2u_2^2)-(m_1v_1^2+m_2v_2^2)\right]
= \frac{1}{2(m_1+m_2)}\left[(m_1+m_2)(m_1u_1^2+m_2u_2^2)-(m_1+m_2)(m_1v_1^2+m_2v_2^2)\right]
= \frac{1}{2(m_1+m_2)}\left[\left(m_1^2u_1^2+m_2^2u_2^2+m_1m_2(u_1^2+u_2^2)\right)\\-\left(m_1^2v_1^2+m_2^2v_2^2+m_1m_2(v_1^2+v_2^2)\right) \right]
= \frac{1}{2(m_1+m_2)}\left[\left({(m_1u_1+m_2u_2)}^2-2m_1m_2u_1u_2+m_1m_2(u_1^2+u_2^2)\right)\\-\left({(m_1v_1+m_2v_2)}^2-2m_1m_2v_1v_2+m_1m_2(v_1^2+v_2^2)\right) \right]
= \frac{1}{2(m_1+m_2)}\left[\left({(m_1u_1+m_2u_2)}^2+m_1m_2(u_1^2+u_2^2-2u_1u_2)\right)\\-\left({(m_1v_1+m_2v_2)}^2+m_1m_2(v_1^2+v_2^2-2v_1v_2)\right) \right]
= \frac{1}{2(m_1+m_2)}\left[{(m_1u_1+m_2u_2)}^2+m_1m_2{(u_1-u_2)}^2\\-{(m_1v_1+m_2v_2)}^2-m_1m_2{(v_1-v_2)}^2\right]
= \frac{1}{2(m_1+m_2)}\left[m_1m_2{(u_1-u_2)}^2-m_1m_2{(v_1-v_2)}^2\right]
[ using equation (1)]
= \frac{1}{2(m_1+m_2)}\left[m_1m_2{(u_1-u_2)}^2m_1m_2e^2{(u_1-u_2)}^2\right]
[using equation (2)]
= \displaystyle{\frac{m_1m_2}{2(m_1+m_2)}{(u_1-u_2)}^2(1-e^2)}
CASE-I:
In case of a perfectly inelastic collision e=0 ,
So the loss of the kinetic energy will be
\displaystyle{\frac{m_1m_2}{2(m_1+m_2)}{(u_1-u_2)}^2}
CASE-II:
In case of perfectly elastic collision e=1 ,
So the loss of the kinetic energy will be
0
This means that after collision the total kinetic energy will remain unchanged.