Calculate The Solid Angle Subtended By A Ring Element.

Share:

Let us consider a sphere of radius R and a ring element PQTS of thickness PQ on the surface of the shere.

OA is normal through the centre of the ring element.

Here \( \angle{QOA}=\theta \) and the angular width of the ring element is \( \angle{POQ}=d\theta \).

Let \( r \) be the radius of the ring QT, so \( r=R\ \sin\theta \).

Now the width of the ring element is \( PQ=R\ d\theta \).

Therefore the area of the surface of the ring element is given by,

\( dA=2\pi{r}\times{PQ}=2\pi{r}\times{R\ d\theta} \)

\( or,\ dA=2\pi{R\ \sin\theta}\times{R\ d\theta} \)

\( or,\ dA=2\pi{R^2}\ \sin\theta\ d\theta \)

Now the solid angle subtended by the ring at the centre O of the sphere is given by,

\( \displaystyle{d\omega=\frac{dA}{R^2}=\frac{2\pi{R^2}\ \sin\theta\ d\theta}{R^2}} \)

\( \displaystyle{or,\ d\omega=2\pi\ \sin\theta\ d\theta} \)

Again, \( \displaystyle{\sin\theta=\sin\ 2\frac{\theta}{2}=2\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}} \)

So the solid angle subtended by the circular ring element can be expressed as,

\( \displaystyle{d\omega=4\pi\ \sin\frac{\theta}{2}\ \cos\frac{\theta}{2}\ d\theta} \)

Share:


Subscribe to the Physics Notebook Newsletter and get the latest insights and updates delivered straight to your inbox.